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Abstract

Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the
patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome
have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure
and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on
undirected connections between regions in which the directions of information flow are not taken into account. How the
brain regions causally influence each other and how the directed network of human brain is topologically organized remain
largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA) and graph theoretical approaches to
a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86) to explore connectivity
patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent
small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world
properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also
showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic,
subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components
of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus) and several
driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior
cingulate gyrus, medial prefrontal cortex and inferior parietal lobule). Further split-half analyses indicated that our results
were highly reproducible between two independent subgroups. The current study demonstrated the directions of
spontaneous information flow and causal influences in the directed brain networks, thus providing new insights into our
understanding of human brain functional connectome.
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Introduction

Recently, increasing attention has been focused on the

investigation of the human brain connectome that describes the

patterns of structural and functional connectivity networks of the

human brain [1,2]. Many studies have demonstrated that the

human brain network follows a small-world topology (i.e., high

clustering and short path lengths linking different nodes) [3–8] and

has an intrinsically cohesive modular structure [9–11]. Important-

ly, these studies have also identified network hubs that are

predominantly located in regions of the association cortices [3–

7,12,13].

Despite the advances in research on the topological properties

of human brain networks, most of these studies have focused on

the undirected network analysis in which the directions of

information flow and the neural driving architecture are

overlooked. However, distinguishing the forward and backward

connections and the construction of directed networks are

important for describing the information interchange between

brain regions and for better understanding the brain’s function

[14–16]. In clinical research, the study of directed network

analyses with finding neural drivers is also essential for the

identification of brain structures involved in the origin or the

control of pathological activities, such as focal epilepsy [17].

Several studies in cats and monkeys have utilized anterograde

and retrograde tracing techniques to investigate directed brain

networks [18–20]. Although these techniques can be used to

identify the information flow between brain regions, they cannot

be applied to human beings in vivo because of their

invasiveness.

Here, we used resting-state functional MRI (R-fMRI) data to

investigate the driving and driven architecture of human brain

directed network. R-fMRI is a powerful tool for the investiga-

tion of spontaneous neuronal activity of the human brain in

health and disease because it has a lot of advantages such as

reasonable spatial and temporal resolution, non-invasiveness

and simplicity (participants don’t need to perform specific

experimental tasks) [21–23]. Recent advances in modern brain

imaging techniques have suggested that R-fMRI allows for the

mapping of the directed network of the human brain in vivo
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[24–27]. To construct the intrinsic whole-brain functional

directed network, in this study, we utilized Granger causality

analysis (GCA) [28] to obtain information flow directions

between brain regions.

GCA incorporates information on temporal precedence and

does not require a priori specification of a network model [29–31].

Therefore, this model is suitable for the construction of directed

network of the human brain. Several recent studies have applied

GCA to R-fMRI data to identify the information flow directions

among a small number of regions [24–27]. Specifically, Liao et al.

[27] utilized GCA on R-fMRI time series of 90 regions of interest

to construct a directed whole-brain functional network at an

individual level. However, they found that the small-world

properties of the directed networks were very weak as the

normalized clustering coefficients (the ratio of the clustering

coefficient of the brain network to the constructed random

networks) ranging from 1.02 to 1.08. This result was not

compatible with previous undirected brain functional networks

studies in which the normalized clustering coefficients were usually

found to be around 2 [7,8,10,32]. There are several possible

reasons for the discrepancies. First, Liao et al. [27] used a kernel

version of GCA that might over-fit the data and model too much

noise. This processing could result in a very weak small-world

property in the directed brain network under the given thresholds.

The linear multivariate GCA can avoid the problems of fixing the

degree of nonlinearity of the model and losing statistical power due

to introducing more features with nonlinearity encountered in

nonlinear generalization of GCA [33,34]. Second, Liao et al. [27]

constructed a directed network for each participant and analyzed

the individual network properties. Notably, GCA may yield

spurious connections (i.e., false positives) in the worst case scenario

if the hemodynamic delay opposes the neuronal delay, and

therefore, the causality needs to be statistically inferred [26]. Thus,

in order to control the ‘‘false-positive’’ connections to be minimal

(e.g., using conservative statistical criterion) in the brain network, it

would be important to construct a population-based functional

directed network by capturing the underlying common connec-

tivity pattern of the brain.

To further clarify whether the directed brain functional network

show small-world properties, in the present study, we used R-

fMRI and linear multivariate GCA methods to construct a

population-based directed network in the human brain. We

further utilized graph theoretical approaches to analyze various

topological properties of the brain networks, including the small-

worldness, modules and hubs. Finally, we performed a split-half

analysis to test the reproducibility of our results. We expected to

discover prominent small-world characteristics and reliable driving

and driven architectures in the directed human brain functional

network.

Materials and Methods

Participants
Data were selected from a large sample R-fMRI dataset of

our group, which has been publicly released as a part in the

‘‘1000 Functional Connectomes’’ Project (http://www.nitrc.

org/projects/fcon_1000/). We selected 86 young healthy

volunteers (48 females: 20.861.6 years old, range 18–25; and

38 males: 20.761.7 years old, range 17–25) with head motions

of less than a 2.0-mm displacement in any of the x, y, or z

directions or 2.0u of any angular motion throughout the resting-

state scan and with a coverage of the whole brain as published

previously [35,36]. All participants were right-handed and had

no history of neurological or psychiatric disorders. Written

informed consent was obtained from each participant, and the

study was approved by the Institutional Review Board of State

Key Laboratory of Cognitive Neuroscience and Learning,

Beijing Normal University.

Image acquisition
MRI data were acquired using a SIEMENS TRIO 3-Tesla

scanner in the Beijing Normal University Imaging Center for Brain

Research. The participants were supine with the head snugly fixed

by straps and foam pads to minimize head movement. During the

resting-state session, the participants were instructed to hold still,

keep their eyes closed but not fall asleep and not think of anything in

particular. The functional images were obtained using an echo-

planar imaging sequence with the following parameters: 33 axial

slices, thickness/gap = 3/0.6 mm, in-plane resolution = 64664,

repeat time (TR) = 2000 ms, echo time (TE) = 30 ms, flip an-

gle = 90u, field of view (FOV) = 2006200 mm. None of the subjects

fell asleep according to a simple questionnaire after the scan. In

addition, a T1-weighted sagittal three-dimensional magnetization-

prepared rapid gradient echo (MPRAGE) sequence was acquired

that covered the entire brain: 128 slices, TR = 2530 ms,

TE = 3.39 ms, slice thickness = 1.33 mm, flip angle = 7u, inversion

time = 1100 ms, FOV = 2566256 mm and in-plane resolu-

tion = 2566192.

Preprocessing
Unless otherwise stated, all preprocessing was performed

using Statistical Parametric Mapping (SPM5, http://www.fil.

ion.ucl.ac.uk/spm) and Data Processing Assistant for Resting-

State fMRI (DPARSF) [35]. The first 10 volumes of the

functional images were discarded due to signal equilibrium and

to allow the participants to adapt to the scanning noise. All

slices of the remaining 230 volumes were corrected for the

different acquisition times of the signals by shifting the signal

measured in each slice relative to the acquisition of the slice

acquired in the middle time of each TR. Then, the time series

of images of each subject were motion-corrected using a least

squares approach and a six-parameter (rigid body) linear

transformation [37]. The individual structural image (T1-

weighted MPRAGE images) was co-registered to the mean

functional image after motion correction using a linear

transformation [38]. The transformed structural images were

then segmented into gray matter (GM), white matter and

cerebrospinal fluid using a unified segmentation algorithm [39].

The motion corrected functional volumes were spatially

normalized to the Montreal Neurological Institute (MNI) space

and re-sampled to 3-mm isotropic voxels using the normaliza-

tion parameters estimated during unified segmentation.

GCA and network construction
The whole brain was first parcellated into 90 cortical and

subcortical regions of interest (45 for each hemisphere, see Table

S1) using a prior anatomical automatic labeling (AAL) atlas [40]

(Figure 1). The mean time series of each region was extracted by

averaging the time series of all voxels within that region. The

linear trend of each time series was removed and the time series

were normalized to a zero-mean and unit-variance. The time

series were not further low-pass filtered because GCA using low

lag orders operates on high-frequency deflections in time courses

[33]. Unlike the kernel version of GCA used in Liao et al. [27], a

linear multivariate GCA was applied to evaluate the relationship

between the time series according to a generic multivariate

autoregressive model [28,33]:

Directed Small-World Brain Networks
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where x1(t), …, xn(t) denotes n time series and zj(t) represents up to

q exogenous covariates (6 head motion parameters and global

mean signal) (j = 1, …, q). p denotes the autoregressive order and

was set to 1 here to estimate the time-directed prediction between

the BOLD time series across a lag of one TR (2000 ms) because an

order of 1 can maximize the temporal resolution of the estimates of

neural influence [29,31,33]. Granger causality coefficients (GCCs)

are defined by b in this formula and denote the contributions of

each lagged variable to the prediction of its respective target. c
corresponds to the covariate effect, and the prediction errors of

individual models are denoted by e. If a GCC bnm is significantly

different from zero, then it is said that xm Granger causes xn. Two-

tailed one-sample t-tests were performed for all of the possible

90689 pair-wise GCCs across subjects. A false discovery rate

(FDR) correction [41] was used to control the expected false

discovery rate at 0.05 (corrected P,0.05). Using this resultant

threshold, we converted the causality matrix into a binarized

matrix (sparsity = 7.44%). The sparsity of a network is the ratio of

the number of existing directed edges to the maximum possible

directed edges in the network and whose element was 1 if there

was significant Granger causality from one brain region to another

and 0 otherwise. Thus, we constructed a population-based

functional directed network by capturing the underlying common

connectivity pattern of the brain (i.e., backbone), which controls

the ‘‘false-positive’’ connections to be minimal in the network.

Network analysis
Nodal degree. For a given node i, the out-degree was the

number of outflow connections from node i to any other node in

the network and quantified the driving ability of this node [42]:

kout
i ~

XN

j=i

aij ,

where N is the number of nodes and aij denotes the directed

connection from node i to node j.

In-degree was the number of inflow connections to a node from

any other node in the network and quantified the receiving ability

of this node:

kin
i ~

XN

j=i

aji

Out-In degree was the difference between out-degree and in-

degree and measured the net outflow from a node:

kout{in
i ~kout

i {kin
i

The nodes with the largest degree values were considered

pivotal nodes (i.e., hubs) in the network. Specifically, we identified

driving hubs in the functional directed network as those nodes with

out-degree values of at least one standard deviation (SD) greater

than the average out-degree of the network (i.e., kout
i .mean+SD).

Likewise, we identified driven hubs according to their in-degree

(i.e., kin
i .mean+SD).

Small-world properties. The small-world model of

undirected networks was originally proposed by Watts and

Strogatz [43]. Small-world networks have highly local clustering

(i.e., neighboring nodes are connected tightly) and short average

paths (i.e., one node is only a few paths away from any other node

in the network), thereby supporting the coexistence of segregation

and integration. In this study, we investigated the small-world

properties of directed brain networks. The directed clustering

coefficient, Cd, of a network was the average of the clustering

coefficients of all nodes whereas the clustering coefficient, Ci, of a

node i was defined as the likelihood that the node’s neighbors were

connected with each other [44]:

Cd~
1

N

XN

i~1

Ci~
1

n

XN

i~1

1
2

PN
j~1

PN
h~1

(aijzaji)(aihzahi)(ajhzahj)

(kout
i zkin

i )(kout
i zkin

i {1){2
PN
j~1

aijaji

The directed clustering coefficient, Cd, quantified the extent of

local cliquishness or the local efficiency of information transfer of a

network [43–45].

The path length from node i to node j was defined as the sum of

the directed edge lengths along this path. The shortest path length,

Lij, from node i to node j was the length of the path with the

shortest length between the two nodes. The directed characteristic

shortest path length, Ld, of a network was measured using a

‘‘harmonic mean’’ length between pairs as proposed by Newman

[46], which is the reciprocal of the average of the reciprocals:

Ld~
1

1
N(N{1)

PN
i~1

PN
j=i

1
Lij

The directed characteristic shortest path length, Ld, quantified the

ability of a network to propagate information in parallel or the

global efficiency (in terms of 1/Ld) of a network.

The normalized directed clustering coefficient, ĈCd~

Creal
d =Crand

d , and the normalized directed characteristic path

length, L̂Ld~Lreal
d =Lrand

d , were also computed, where Crand
d and

Lrand
d were the mean directed clustering coefficients and the

directed characteristic path lengths of 100 matched random

networks, respectively. These matched random networks were

generated by preserving the same number of nodes, edges, out-

degree and in-degree distribution as the real networks [47]. A real
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network is considered small-world if it meets the following criteria:

ĈCd~Creal
d =Crand

d w1 and L̂Ld~Lreal
d =Lrand

d &1 [43]. In other

words, a small-world network has a much higher local efficiency

than random networks but still approximately preserves the high

global efficiency of the random networks. The small-world proper-

ties of the directed networks were calculated with the Brain Con-

nectivity Toolbox [42] (http://www.brain-connectivity-toolbox.

net/).

Modularity. Modularity is one of the most fundamental and

intriguing properties of many biological networks [48]. To explore

the intrinsic modular structure of the human brain directed

network, we computed modularity according to Leicht and

Newman’s algorithm [49]. The modularity, Q, for a given

partition, p, of the directed network was defined as:

Q(p)~
1

M

XM
i~1

XM
j~1

aij{
kin

i kout
j

M

" #
dci ,cj

,

where M was the number of edges, dij was the Kronecker delta

symbol, and ci was the label of the module to which node i was

assigned. The modularity index quantified the difference between

Figure 1. Flowchart for the construction of the human intrinsic whole brain functional directed network based on R-fMRI. (a) The
resting-state functional images were preprocessed. (b) Mean functional time series of 90 AAL regions were extracted. (c) Multivariate GCA was
applied to evaluate the relationship between the time series. (d) GCCs (b), which denote the causal influence between regions, were evaluated for
each subject. (e) The functional directed network was constructed by exerting an FDR threshold on t-tests of the pair-wise GCCs across subjects. The
left panel denotes the mean GCCs across subjects; the second left panel denotes the brain directed network after FDR correction; the right two
panels denote the sagittal view and the axial view of the brain directed network.
doi:10.1371/journal.pone.0023460.g001
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the number of intra-module links of the actual network and the

random network, in which the connections are linked at random.

If one partition maximized Q over the possible divisions of the

network, the maximum was considered as the best estimate of the

true communities in the network. An explicit algorithm based on

the spectral optimization of the modularity developed by Leicht

and Newman [49] was used. Finally, we evaluated the significance

of the modularity of the functional brain networks by comparing

with the 100 node-, edge-, in-degree- and out-degree-matched

random networks.

Reproducibility of directed brain networks
1) Threshold effects. Considering that the different

thresholds have effects on the number of edges of the resulting

brain networks and thereby influence the topological properties,

we evaluated the topological stability of the brain functional

networks over a wide sparsity ranging from 5% to 50%. Note that

at the FDR threshold (sparsity = 7.44%), the directed network was

a weakly connected (WC) graph in which it was possible to reach

any node starting from any other node by traversing the edges in

free directions (i.e., not necessarily in the direction that the edges

pointed). When the sparsity increased to 13.07%, the network

became a strongly connected (SC) graph in which it was possible to

reach any node starting from any other node by traversing the

edges in the directions that the edges pointed. Therefore, we also

checked the nodal and modular properties at this sparsity of the

SC threshold.

2) Inter-subject variability. Another concern was that the

inter-subject variability may dramatically influence the reliability

of the group analysis of fMRI [50]. This concern was especially

high for the GCA because it can be influenced by the inter-region

and inter-subject variability of hemodynamic responses [51–55].

To test the reproducibility of our results across participants, we

divided all 86 participants into two independent subgroups (43

subjects for each subgroup, age- and gender-matched) and

calculated the split-half reliability. For each subgroup, the brain

functional network were separately constructed and analyzed with

the same criterion of the aforementioned whole-group analyses

(sparsity = 7.44%). The results of the two independent subgroups

were compared to evaluate the reproducibility.

Results

Directed functional connections of the human brain
functional network

At the statistical criterion (P,0.05, FDR corrected), 596

directed edges were significant in our studied population of young

adults. One hundred and eight directed edges comprised 54

Figure 2. Distribution of anatomical distance and nodal degree. (A) Anatomical distance distribution. This figure shows numerous local-
range connections and a few long-range connections. (B) Out-degree distribution. The exponentially truncated power-law (with an estimated
exponent a = 1.29 and a cutoff degree kc = 4.26) fits in the log-log plot of the cumulative probability versus the out-degree of the brain functional
directed network. (C) In-degree distribution. The exponentially truncated power-law (with an estimated exponent a = 1.57 and a cutoff degree
kc = 3.13) fits in the log-log plot of the cumulative probability versus the in-degree of the brain functional directed network. (D) Out-In degree
distribution. The exponentially truncated power-law (with an estimated exponent a = 1.03 and a cutoff degree kc = 6.12) fits in the log-log plot of the
cumulative probability versus the out-in degree of the brain functional directed network.
doi:10.1371/journal.pone.0023460.g002
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reciprocal connection pairs (one reciprocal connection pair

between nodes i and j consisted of the two directed edges aij and

aij), but the other 488 directed edges were one-way connections.

We found 58.7% of the directed edges were intra-hemispheric

connections, and 41.3% were inter-hemispheric connections. As

demonstrated in Figure 2A, most of the significant directed edges

had shorter anatomical distances (Euclidean distance ,75 mm,

71.3%), but a few long-range (Euclidean distance .75 mm,

28.7%) directed edges were also observed in this brain network.

Consistent with these results, several previous studies have also

demonstrated many local and few long-range connections in the

human brain [7,8]. The short-range/local edges may be associated

with the short fibers that constitute the local circuitry, but long-

range edges may be associated with the commissural fibers (inter-

hemispheric connections) and long intra-hemispheric association

fibers [56]. Although the number of long-range connections is

limited in the brain directed network, they might constitute

shortcuts to ensure short mean path lengths of the whole network

[4,57]. Of note, there are some inter-hemispheric connections

passing through long fibers, but they were defined as short

Euclidean distances here. In the future studies, it would be

important to employ fiber length acquired by diffusion tensor

imaging to define the anatomical distances between brain regions.

Table 1 includes the 20 most significant inter-regional directed

connections (P#1.10610213). Eleven of the 20 significant causal

influences were present in homologous regions in a bilateral and

symmetrical fashion.

Small-world brain functional directed networks
We calculated the directed clustering coefficient (Cd ) and

directed characteristic path length (Ld ) for both the functional

directed network and the corresponding 100 random networks

with the same number of nodes, edges, out-degree and in-degree

distribution for the brain directed network. As expected, the

directed network at the FDR corrected threshold (sparsi-

ty = 7.44%) demonstrated small-world architecture; it had an

almost identical path length (L̂Ld = 1.04) but was more locally

clustered (ĈCd = 1.66) compared to the matched random networks.

This result is compatible with previous directed network studies in

animals and undirected network studies in humans (for reviews,

see [58–61]). Liao et al. [27] found that the directed brain

functional networks had significant but weak small-world proper-

ties. Our results showed that the directed brain functional

networks exhibited prominent small-world properties, which

obviously improved the previous results due to the methodological

enhancements.

Nodal degree and hub regions
We examined the nodal degree distribution of the directed

network in the human brain. The brain network can be well fitted

by an exponentially truncated power-law form, P(k)*ka{1

e{k=kc , for the out-degree, in-degree and out-in degree (Figure 2).

An exponentially truncated power-law degree distribution has

been found in previous cortical anatomical networks [20], human

brain structural networks [4,6,62] and functional networks [7].

When comparing networks with a scale-free (i.e., power-law)

distribution, networks with a truncated power-law degree

distribution are highly resilient to random errors and targeted

attacks [7,63]. This truncated power-law distribution indicates that

the human brain network has some ‘‘core’’ regions but prevents

the appearance of huge hubs with many connections.

To identify the hub regions in the human brain functional

directed network, we examined the out-degree and in-degree of

brain regions at the FDR threshold. Thirteen regions were

identified as driving hubs, which are predominantly located in the

attentional network [64–66], because of their large values of out-

degree (kout
i .mean+SD) (Figure 3A, Table 2). These driving hubs

included 6 regions of the heteromodal or unimodal association

cortex [the bilateral opercular part of the inferior frontal gyrus

(IFGoperc), the left triangular part of the inferior frontal gyrus

(IFGtriang), the right fusiform gyrus (FFG), the supplementary

motor area (SMA) and the left angular gyrus (ANG)], 5 regions of

the paralimbic cortex [the bilateral orbital part of the inferior

frontal gyrus (ORBinf), the right anterior cingulate and para-

cingulate gyri (ACG), the middle cingulate and paracingulate gyri

(DCG) and the left insula (INS)] and 2 regions of the subcortical

cortex [the bilateral putamen (PUT)]. Fifteen regions were

identified as driven hubs predominantly located in the default

mode network (DMN) [67–69] because of their large values of in-

degree (kin
i .mean+SD) (Figure 3B, Table 3). These driven hubs

included 10 regions of the heteromodal or unimodal association

cortex [the bilateral precuneus (PCUN), middle frontal gyrus

(MFG), right superior parietal gyrus (SPG), inferior parietal lobule

(IPL), medial superior frontal gyrus (SFGmed), supramarginal

gyrus (SMG), ANG and left Rolandic operculum (ROL)] and 5

regions of the paralimbic cortex [the bilateral medial orbital part

Table 1. Twenty of the most significant directed connections.

Region (out) Region (in) Class P

PUT.R PUT.L SIeH 9.18610225

PUT.L PUT.R SIeH 5.79610222

STG.R STG.L SIeH 6.19610222

ORBinf.L SFGmed.L IaH 1.16610220

IFGoperc.R SMG.R IaH 2.26610217

FFG.R MOG.R IaH 3.86610217

IFGoperc.R IPL.R IaH 6.61610217

PCL.L PCL.R SIeH 9.11610217

FFG.R FFG.L SIeH 2.49610216

CAL.R CAL.L SIeH 4.27610216

CAU.R CAU.L SIeH 1.07610215

HIP.R HIP.L SIeH 1.37610215

ACG.R ACG.L SIeH 3.56610215

SMG.R SMG.L SIeH 4.79610215

FFG.L FFG.R SIeH 5.39610215

IFGoperc.R MFG.R IaH 1.29610214

IFGoperc.L IFGtriang.L IaH 5.67610214

ORBinf.L TPOsup.L IaH 8.26610214

ACG.L DCG.L IaH 8.89610214

IFGoperc.L IPL.L IaH 1.10610213

List of the 20 directed edges (in a descending order of statistical significance)
with the most significant Granger causality from Region (out) to Region (in).
These edges were classified into intra-hemispheric (IaH, 9) and symmetrically
inter-hemispheric (SIeH, 11) connections. P denotes the significance level of the
Granger causality between the two regions. PUT, putamen; STG, superior
temporal gyrus; ORBinf, orbital part of the inferior frontal gyrus; SFGmed,
medial superior frontal gyrus; IFGoperc, opercular part of the inferior frontal
gyrus; SMG, supramarginal gyrus; FFG, fusiform gyrus; MOG, middle occipital
gyrus; IPL, inferior parietal lobule; PCL, paracentral lobule; CAL, calcarine fissure
and surrounding cortex; CAU, caudate; HIP, hippocampus; ACG, anterior
cingulate and paracingulate gyri; MFG, middle frontal gyrus; IFGtriang,
triangular part of the inferior frontal gyrus; TPOsup, temporal pole (superior);
DCG, middle cingulate and paracingulate gyri; L, left; R, right.
doi:10.1371/journal.pone.0023460.t001
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of the superior frontal gyrus (ORBsupmed), right DCG, INS and

the left posterior cingulate gyrus (PCG)]. Most (2/3) of these

driven regions located in the heteromodal or unimodal association

cortex are consistent with previous undirected functional connec-

tivity studies [3,7]. Ten of the 13 driving hubs showed high net

out-flow (kout{in
i .mean+SD), whereas 10 of the 15 driven hubs

showed high net in-flow (kout{in
i ,mean2SD).

Modularity of the brain functional directed network
We performed a modular detection process that did not take

prior knowledge regarding the functionality of any brain regions

into account. As a result, a maximum modularity (Qmax = 0.32, Z-

score = 10.80) was reached when the brain functional network was

separated into 5 modules (I, II, III, IV, V in Figure 4 and Table 4).

Module I was designated the ‘‘fronto-parietal’’ module. This

module included 25 regions mainly from the frontal and parietal

regions, such as the bilateral MFG, IFGtriang, SFGmed, SPG,

precentral gyrus (PreCG), postcentral gyrus (PoCG), Rolandic

operculum (ROL), SMG, inferior temporal gyrus (ITG), right

superior frontal gyrus (SFGdor), ORBinf, SMA, ACG, ANG,

middle temporal gyrus (MTG) and the left IPL. Module II was

designated the ‘‘visual’’ module. This module included 20 regions

mainly from the visual cortex, such as the bilateral superior

occipital gyrus (SOG), middle occipital gyrus (MOG), inferior

occipital gyrus (IOG), cuneus (CUN), lingual gyrus (LING), FFG,

PCUN, PCG, IFGoperc, left SFGdor and ANG. Module III was

designated the ‘‘paralimbic/limbic’’ module. This module includ-

ed 23 regions mainly from the paralimbic and limbic cortex, such

as the bilateral orbital part of the superior frontal gyrus (ORBsup),

orbital part of the middle frontal gyrus (ORBmid), ORBsupmed,

olfactory cortex (OLF), gyrus rectus (REC), temporal pole (middle)

(TPOmid), hippocampus (HIP), parahippocampus gyrus (PHG),

left ORBinf, temporal pole (superior) (TPOsup), MTG, INS,

ACG, DCG and the right inferior parietal lobule (IPL). Module IV

was designated the ‘‘subcortical’’ module. This module included 8

regions mainly from the subcortical cortex, such as the bilateral

caudate (CAU), PUT, pallidum (PAL) and the amygdala (AMYG).

Figure 3. The driving and driven hubs in the human brain functional directed network. The surface visualization (using the Caret software
[94]) of all 90 brain regions with node sizes indicating their relative out-degree kout

i (A) or in-degree kin
i (B) values. (A) Regions with out-degree

kout
i .mean+SD are considered driving hubs (red colors) or non-hubs (green colors) otherwise. (B) Regions with in-degree kin

i .mean+SD are
considered driven hubs (blue colors) or non-hubs (green colors) otherwise. For the abbreviations of the regions, see Table S1.
doi:10.1371/journal.pone.0023460.g003
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Module V was designated the ‘‘primary’’ module. This module

included 14 regions mainly from the auditory, visual and motor

cortex, such as the bilateral Heschl’s gyrus (HES), superior

temporal gyrus (STG), calcarine fissure and the surrounding

cortex (CAL), paracentral lobule (PCL), thalamus (THA), right

INS, DCG, TPOsup and the left SMA.

Reproducibility of our findings
1) Threshold effects. We evaluated the topological stability

over a wide sparsity ranging from 5% to 50% for the whole group,

and the directed network demonstrated small-world architectures

(ĈCd.1, L̂Ld,1) over this wide range of sparsity compared to the

matched random networks (Figure 5A). As the sparsity increased

to make the network a strongly-connected directed graph (SC

threshold: sparsity = 13.07%), the normalized clustering coefficient

of the brain network dropped but was still larger than 1

(ĈCd = 1.28); however, the normalized characteristic path lengths

remained similar to 1 (L̂Ld = 1.02). The directed networks at these

two sparsities (SC threshold: 13.07% and FDR threshold: 7.44%)

showed high consistency on the nodal out-degree (r = 0.91,

P = 4610236), in-degree (r = 0.87, P = 4610229) and out-in

degree (r = 0.90, P = 3610233) (Figures 5B, 5C and 5D). Twelve

driving hubs were found at the SC threshold of which 11 were

confirmed at the FDR threshold (sparsity = 7.44%), while 9 of the

10 driven hubs at the SC threshold had been found in the previous

FDR threshold step (Figures 6A, 6B and Table S2). For the

modular architecture at the SC threshold, Module IV (the

‘‘subcortical’’ module) and Module V (the ‘‘primary’’ module)

were merged together and reduced to 4 modules while

maintaining a similar modular organization with the FDR

threshold (Figure 6C, Table S3). These results suggested that the

properties of the directed network were not very sensitive to the

selection of the sparsity thresholds.

2) Inter-subject variability. We also calculated the split-half

reliability by dividing all 86 participants into two independent

subgroups (43 subjects for each subgroup, age- and gender-

matched) to test the robustness of the construction of the brain

functional directed network. Visual examination indicated that the

GCC patterns were similar between the two datasets (Figure 7A)

and in the aforementioned whole group (Figure 1). Further

statistical analyses revealed a significant correlation (r = 0.69,

P = 0.00) (Figure 7B) in the mean GCC between the two

subgroups. The two subgroups showed a high overlap across a

long range of sparsity (Figure 7C). Both of the directed networks of

the two subgroups showed high small-world properties at the same

threshold (sparsity = 7.44%) as the whole group (Figure 7D). The

clustering coefficients of the brain networks for the two subgroups

were approximately one and a half times greater than the

comparable random networks (subgroup 1: ĈCd = 1.47; subgroup 2:

ĈCd = 1.40), whereas the characteristic path length was

approximately equivalent to the random networks (subgroup 1:

L̂Ld = 1.02; subgroup 2: L̂Ld = 1.04). The directed networks of the

two subgroups also showed high consistency in the nodal out-

degree (r = 0.75, P = 3610217), in-degree (r = 0.61, P = 1610210)

and out-in degree (r = 0.68, P = 3610213) (Figures 7E and 7F).

Nine of the 13 driving hubs were confirmed in the two subgroups,

and 8 of the 15 driven hubs were confirmed in the two subgroups

(Figures S1A, S1B and Table S4). For the modular architecture in

subgroup 1, Module I (the ‘‘fronto-parietal’’ module) and Module

IV (the ‘‘subcortical’’ module) were merged together and reduced

to 4 modules; however, the modular architecture in subgroup 2

retained 5 modules with small changes to the modular

organization of the whole group (Figure S1C, Table S5 and

Table S6). This split-half analysis demonstrated that the small-

world topology, hub and modular structures showed high

reproducibility between the two independent subgroups,

Table 2. Driving hub regions in the functional directed
network of the human brain.

Driving hub regions Class Out-degree

IFGoperc.R Association 22

ACG.R Paralimbic 21

PUT.R Subcortical 21

ORBinf.L Paralimbic 19

IFGoperc.L Association 18

ORBinf.R Paralimbic 17

INS.L Paralimbic 17

ANG.L Association 17

PUT.L Subcortical 16

IFGtriang.L Association 13

SMA.R Association 12

DCG.R Paralimbic 12

FFG.R Association 12

The driving hub regions (kout
i .mean+SD) in the human functional directed

network are listed in a descending order of their out-degree kout
i . The regions

are classified as primary, association, limbic, paralimbic and subcortical as
described previously in [89]. IFGoperc, opercular part of the inferior frontal
gyrus; ACG, anterior cingulate and paracingulate gyri; PUT, putamen; ORBinf,
orbital part of the inferior frontal gyrus; INS, insula; ANG, angular gyrus;
IFGtriang, triangular part of the inferior frontal gyrus; SMA, supplementary
motor area; DCG, middle cingulate and paracingulate gyri; FFG, fusiform gyrus;
L, left; R, right.
doi:10.1371/journal.pone.0023460.t002

Table 3. Driven hub regions in the functional directed
network of the human brain.

Driven hub regions Class In-degree

PCUN.R Association 17

PCUN.L Association 16

MFG.R Association 14

SPG.R Association 13

SMG.R Association 13

DCG.R Paralimbic 12

ANG.R Association 12

MFG.L Association 11

SFGmed.R Association 11

ROL.L Association 11

PCG.L Paralimbic 11

ORBsupmed.R Paralimbic 11

INS.R Paralimbic 11

ORBsupmed.L Paralimbic 11

IPL.R Association 10

The driven hub regions (kin
i .mean+SD) in the human functional directed

network are listed in a descending order of their in-degree kin
i . PCUN,

precuneus; MFG, middle frontal gyrus; SPG, superior parietal gyrus; SMG,
supramarginal gyrus; DCG, middle cingulate and paracingulate gyri; ANG,
angular gyrus; SFGmed, medial superior frontal gyrus; ROL, Rolandic operculum;
PCG, posterior cingulate gyrus; ORBsupmed, medial orbital part of the superior
frontal gyrus; INS, insula; IPL, inferior parietal lobule; L, left; R, right.
doi:10.1371/journal.pone.0023460.t003
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suggesting that GCA might be a reliable approach to perform

spontaneous causal influence analysis and construct directed

network with R-fMRI.

Discussion

In this study, we utilized GCA on R-fMRI data with a large

sample of young healthy participants (n = 86) to construct

spontaneous whole brain functional directed network of the

human brain. We found that this directed network followed a

small-world topology with significant modular structures that

associated with 5 well known subsystems. Importantly, we

identified driving hubs predominantly located in the attentional

network as well as driven hubs predominantly located in the

DMN. Furthermore, a split-half analysis demonstrated that the

network properties showed high reproducibility between the two

independent subgroups.

GCA-based network construction and directed
connections

Unlike other directed causal influence analysis techniques, such

as structural equation modeling [70] and dynamic causal modeling

[71], GCA incorporates information on temporal precedence and

does not require a priori specification of a network model [29–31].

Therefore, GCA is suitable for the construction of directed

network in the human brain. In the current study, we applied

multivariate GCA to evaluate the relationship between the time

series [28,33], thus we can identify whether there was an

intermediate node between two target nodes (i.e., to differentiate

the Granger causality between XRY and XRZRY). We further

compared the 20 most significant edges with previous studies to

address the possible neurobiological meaning of the directed edges

detected by GCA (Table 1). Eleven of the 20 significant causal

influences were present in homologous regions in a bilateral and

symmetrical fashion. This finding is consistent with previous

undirected functional connectivity studies that have shown

coherent spontaneous activities between symmetrically bilateral

brain regions, such as the bilateral motor cortex [72], visual cortex

[73], auditory cortex [74], amygdala [73], caudate [75] and the

putamen [75,76]. Specifically, as the two most significant edges,

the bi-directional information flow pathway between the bilateral

putamen (also identified as driving hubs) can provide efficient

information exchange to support the important roles of putamen

that are involved in motoric and high-level cognitive functions

[77–80]. In addition to the inter-hemispheric edges, we also

observed significant intra-hemispheric causal edges mainly from

the IFG (IFGoperc, ORBinf) to the SFG, MFG, IPL, TPOsup and

SMG. Consistent with the current findings, a previous GCA study

found that the inferior frontal cortex exerts significant causal

influence on the dorso-lateral prefrontal cortex, posterior parietal

cortex, posterior cingulate cortex and the temporo-parietal

junction in resting-state [24]. The IFG is a critical region in

response inhibition [81,82] and plays a key role in switching

between the central-executive and the DMN [24]. Therefore, the

IFG might need to exert a causal influence on these distributed

brain regions to maintain its important driving hub role.

Small-world directed brain functional network in humans
Recent studies have demonstrated small-world topology in

large-scale structural brain networks and functional undirected

brain networks in humans (for reviews, see [58–61]). Several

studies in cats and monkeys have found that the anatomical

directed networks of animals are small-world [18–20]. However, a

very recent R-fMRI study [27] shows that the small-world

property of human functional directed network is very weak

because the normalized clustering coefficients (ĈCd ) ranging from

1.02 to 1.08 for their given thresholds. Here, we showed that the

directed brain functional network had a prominent small-world

structure characterized by a higher normalized clustering

coefficient (ĈCd = 1.66). This result is compatible with previous

AAL-based undirected brain functional networks in which the

normalized clustering coefficients were around 2 [7,8,10,32]. The

discrepancy between our result and Liao et al.’s [27] could be due

to the fact that they used a kernel version GCA that over-fits the

data (further comments can be found in the following section). Our

finding eliminates the doubt of the fundamental principle of small-

world topology effects in the functional directed networks. The

current study further supports that small-world topology is a key

strategy in the organization of the complex brain network to make

it an efficient neural architecture while maximizing the power of

information processing [83,84].

Driving and driven neural hubs in the human brain
Most of the 13 driving hub regions (e.g., the inferior frontal

gyrus [IFG] regions, SMA, INS, ACG and the FFG) are involved

in the previously reported attentional or so-called ‘‘task-positive’’

network [64–66]. The task-positive network regions are routinely

activated during goal-directed task performance and are anti-

correlated with the DMN [64–66]. The brain regions in the task-

Figure 4. The modular architecture of the human brain functional directed network. All of the 90 brain regions are marked with different
colored spheres (different colors represent distinct network modules) and further mapped onto the cortical surfaces using the Caret software [94].
doi:10.1371/journal.pone.0023460.g004
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positive network support an extrospectively-oriented mind state

(i.e., to enter a mode of preparedness and alertness for possible

changes) [65]. Previous GCA studies have found regions in this

task-positive network, such as the IFG, which had the highest out-

degree in our results, that show the highest out-degree and a large

influence on other brain regions in salience tasks [24,85] or in

resting-state [24,27]. Our findings suggest that the task-positive

network could exert a large influence on other brain networks to

maintain attention and readiness even in resting-state.

Fifteen regions were identified as driven hubs, and most of them

(PCUN, PCG, MFG, SFGmed, ORBsupmed, IPL, ANG) are

involved in the DMN [67–69] (Figure 3B, Table 3). Similar to our

finding that the PCUN showed the highest inflow, Jiao et al. [25]

found that the PCUN showed the strongest causal inflow among

seven DMN regions using GCA. Liao et al. [27] found that the

PCG/PCUN showed consistent high in-degree distribution. In

addition, Deshpande et al. [26] also found that the PCG/PCUN

acts as major hubs in bidirectional causal interactions. As the most

important part of DMN, the PCUN and the adjacent PCG can be

posited as a tonically-active region of the brain that may

continuously gather information about the world around and

within us [67]. As another important part of the DMN, the medial

prefrontal cortex, which is heavily interconnected with limbic

structures [86,87], showed a high causal inflow here, which is

suggested to be associated with an evaluation of the salience of the

general information collected by PCUN and PCG [67]. Our

findings further support the hypothesis that the DMN is broadly

associated with the gathering and evaluating of information in

resting-state [67].

Of note, Uddin et al. [66] found that the DMN exerts greater

Granger influence on the task-positive network in resting-state,

which seems inconsistent with our findings. There are several

discrepancies between our study and theirs. First, they extracted

the mean time series from big masks other than neural nodes (e.g.,

all of the voxels showed significant correlation with PCG for the

DMN). Second, they did not take other brain regions into account.

The driving hubs in the task-positive network may exert an

influence on the executive network, and the DMN may gather

information from the sensory network. Together, our findings

suggest that, even in the resting-state without any attentional tasks,

the DMN is receiving and evaluating general information

continuously, while the task-positive network exerts influence on

other brain networks, such as the executive network, to maintain a

high readiness for incoming attentional events. These results give

insight to the function of the task-positive network and the

competition and/or cooperation between the task-positive network

and the DMN.

Modularity of the brain functional directed network
We found that the functional directed network of the human

brain showed high modularity (Qmax = 0.32, Z-score = 10.80),

which is consistent with previous modularity studies in the human

brain [9–13]. The current finding suggests that modular structure

is a fundamental design principle of spontaneous brain functional

directed networks which allows evolutionary or developmental

adaptation of one functional module without risking loss of

function in other modules [11,88]. We identified five intrinsically

cohesive modules corresponding to 5 well known subsystems:

fronto-parietal, visual, paralimbic/limbic, subcortical and primary

systems (Figure 4, Table 4). Most regions (37/45) in the first two

modules (fronto-parietal, visual) were association cortex regions.

Therefore, the modular architecture here is consistent with the

cortex parcellation scheme of Mesulam [89]: association, limbic,

paralimbic, subcortical and primary sensory areas. Our results are

Table 4. Modular architecture of the human brain functional
directed network.

Module Regions Class Module Regions Class

I SFGdor.R Association III ORBsup.L Paralimbic

I MFG.L Association III ORBsup.R Paralimbic

I MFG.R Association III ORBmid.L Paralimbic

I IFGtriang.L Association III ORBmid.R Paralimbic

I IFGtriang.R Association III ORBinf.L Paralimbic

I ROL.L Association III ORBsupmed.L Paralimbic

I ROL.R Association III ORBsupmed.R Paralimbic

I SMA.R Association III REC.L Paralimbic

I SFGmed.L Association III REC.R Paralimbic

I SFGmed.R Association III INS.L Paralimbic

I SPG.L Association III ACG.L Paralimbic

I SPG.R Association III DCG.L Paralimbic

I IPL.L Association III PHG.L Paralimbic

I SMG.L Association III PHG.R Paralimbic

I SMG.R Association III TPOsup.L Paralimbic

I ANG.R Association III TPOmid.L Paralimbic

I MTG.R Association III TPOmid.R Paralimbic

I ITG.L Association III OLF.L Limbic

I ITG.R Association III OLF.R Limbic

I PreCG.L Primary III HIP.L Limbic

I PreCG.R Primary III HIP.R Limbic

I PoCG.L Primary III IPL.R Association

I PoCG.R Primary III MTG.L Association

I ORBinf.R Paralimbic IV CAU.L Subcortical

I ACG.R Paralimbic IV CAU.R Subcortical

II SFGdor.L Association IV PUT.L Subcortical

II IFGoperc.L Association IV PUT.R Subcortical

II IFGoperc.R Association IV PAL.L Subcortical

II CUN.L Association IV PAL.R Subcortical

II CUN.R Association IV AMYG.L Limbic

II LING.L Association IV AMYG.R Limbic

II LING.R Association V CAL.L Primary

II SOG.L Association V CAL.R Primary

II SOG.R Association V HES.L Primary

II MOG.L Association V HES.R Primary

II MOG.R Association V SMA.L Association

II IOG.L Association V PCL.L Association

II IOG.R Association V PCL.R Association

II FFG.L Association V STG.L Association

II FFG.R Association V STG.R Association

II ANG.L Association V INS.R Paralimbic

II PCUN.L Association V DCG.R Paralimbic

II PCUN.R Association V TPOsup.R Paralimbic

II PCG.L Paralimbic V THA.L Subcortical

II PCG.R Paralimbic V THA.R Subcortical

The modular architecture of the human brain functional directed network was
detected using an explicit algorithm based on the spectral optimization of the
modularity in directed networks developed by Leicht and Newman [49]. L, left;
R, right; for the abbreviations of the regions, see Table S1.
doi:10.1371/journal.pone.0023460.t004
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also consistent with the modular organization reported in several

recent human brain networks studies. The visual module has been

found in almost all of the human brain modularity studies [9,11–

13,27]. The fronto-parietal module has been identified similarly as

the fronto-cingulo-parietal module [11] or the attention module

[9]. The limbic/paralimbic module and subcortical module have

been found as a single module in the study of He et al. [9]. The

discrepancies between the current study and previous functional

studies could attribute to the directed modular architecture

detection approach that can identify finer community structure

by taking information flow directions into account [49]. The

directed modular architecture might give insights for our

understanding of the human brain functional connectome.

Reproducibility
We constructed the human brain functional directed network

using GCA that incorporates information on temporal precedence

and does not require a priori specification of a network model [29–

31]. Nevertheless, GCA in fMRI is still an open controversial issue

because of the limitations imposed by the hemodynamic response

and inter-subject variability [51–55]. To address these issues, we

evaluated the sparsity-independent stability and split-half repro-

ducibility of the GCA-based functional directed network of the

human brain. We found that the intrinsic functional directed

network showed high consistency in small-world properties, nodal

degree distribution and modular architecture across sparsities

(Figure 5 and Figure 6). Importantly, by dividing all 86

participants into two independent subgroups, we found that the

Granger causality coefficients of the two subgroups showed a high

consistency (Figure 7). The directed network for the two subgroups

showed a high overlap rate, consistent driving/driven hub

distribution and a similar modular architecture (Figure 7 and

Figure S1). These results for the high sparsity-independent stability

and high split-half reproducibility suggest that the GCA might be a

reliable approach for the performance of a spontaneous causal

influence analysis with R-fMRI.

Discrepancies between the current study and previous
studies of functional directed network

Most previous GCA studies on R-fMRI data have focused on a

small number of regions rather than the whole brain functional

directed network. Fox example, Sridharan et al. [24] focused on 8

regions within the DMN, the central-executive network and the

salience network. Jiao et al. [25] focused on 7 regions within the

DMN. Deshpande et al. [26] focused on 33 regions within 4

networks, such as the DMN, the hippocampal cortical memory

network, dorsal attention network and the fronto-parietal control

network. Of note, Liao et al. [27] performed a whole brain

Figure 5. Sparsity-independent stability of the human brain functional directed network properties. (A) The directed networks
demonstrated small-world architectures over a wide range of sparsity. For the FDR threshold (sparsity = 7.44%): ĈCd = 1.66, L̂Ld = 1.04; for the strongly
connected (SC) threshold (sparsity = 13.07%): ĈCd = 1.28, L̂Ld = 1.02. (B–D) The directed networks at these two sparsities (FDR threshold: 7.44% and SC
threshold: 13.07%) showed high consistency on the nodal out-degree (r = 0.91, P = 4610236) (B), in-degree (r = 0.87, P = 4610229) (C) and out-in
degree (r = 0.90, P = 3610233) (D).
doi:10.1371/journal.pone.0023460.g005

Directed Small-World Brain Networks

PLoS ONE | www.plosone.org 11 August 2011 | Volume 6 | Issue 8 | e23460



Figure 6. Hub distribution and modular architecture of the human brain functional directed network at strongly connected (SC)
threshold. (A) Regions with out-degree kout

i .mean+SD are considered driving hubs (red colors) or non-hubs (green colors) otherwise. (B) Regions
with in-degree kin

i .mean+SD are considered driven hubs (blue colors) or non-hubs (green colors) otherwise. (C) All of the 90 brain regions are
marked with different colored spheres (different colors represent distinct network modules) and further mapped onto the cortical surfaces using the
Caret software [94]. For the abbreviations of the regions, see Table S1.
doi:10.1371/journal.pone.0023460.g006
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functional directed network study utilizing GCA on R-fMRI time

series of 90 AAL regions. Our study is different from theirs in the

following ways.

First, Liao et al. [27] used a kernel version of GCA that might

over-fit the data and model too much noise. This may explain why

they found a very weak small-world property as the normalized

clustering coefficients (ĈCd ) ranging from 1.02 to 1.08 for their

given thresholds. Similar to Hamilton et al. [33], we used a linear

multivariate GCA with intuitive interpretations for GCC, which

could avoid the problems of fixing the degree of nonlinearity of the

model and losing statistical power due to introducing more

features with nonlinearity encountered in nonlinear generalization

of GCA [33,34]. We showed a much higher normalized clustering

coefficient (ĈCd = 1.66), which is compatible with previous brain

network studies [7,8,10,32]. Second, Liao et al. [27] constructed

directed network for each participant and analyzed the individual

network properties. Notably, GCA may yield spurious connections

(i.e., false positives) in the worst case scenario if the hemodynamic

delay opposes the neuronal delay, and therefore, the causality

needs to be statistically inferred [26]. In the current study, we

constructed a population-based functional directed network by

capturing the underlying common connectivity pattern of the

cerebral cortex (i.e., backbone) across young healthy adults to

control the ‘‘false-positive’’ connections to be minimal (e.g., using

conservative statistical criterion) in the network. Third, Liao et al.

[27] calculated each participant’s degree properties and used the

Figure 7. Split-half reproducibility of the human brain functional directed network properties. (A) The mean GCC patterns of the two
subgroups were similar to each other and also similar to that in the aforementioned whole-group (Figure 1). (B) Significant correlation (r = 0.69) in the
mean GCC between the two subgroups. (C) The overlap rate of the directed edges between the two subgroups. Overlap rate was defined as the
percentage of edges in subgroup 1 can be replicated in subgroup 2 at a given sparsity. (D) For the two subgroups, the directed networks
demonstrated small-world architectures over a wide range of sparsity. (E) The directed networks of the two subgroups showed high consistency on
the nodal out-degree (r = 0.75, P = 3610217). (F) The directed networks of the two subgroups showed high consistency on the nodal in-degree
(r = 0.61, P = 1610210).
doi:10.1371/journal.pone.0023460.g007
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averaged degree across participants to identify the hub regions.

This procedure did not consider the variation of different

participants, although they used a randomization procedure of

the time series to assess the statistical significance. Fourth, there

were different number of time points between our study (n = 230)

and Liao et al.’s study (n = 500), which may also contribute to the

discrepancies for small-world results between the two studies.

Further work could be conducted to compare the effects of the

scan length of R-fMRI on graph theoretical analysis of brain

networks. Finally, with a larger cohort of participants (N = 86), we

divided all 86 participants into two independent subgroups (43

subjects for each subgroup, age- and gender-matched) and

constructed population-based functional directed networks for

each subgroup to evaluate the inter-subject variability. This

analysis was not performed in previous directed brain functional

studies. Our results of a high split-half reproducibility suggest that

GCA might be a reliable approach to analyze spontaneous causal

influence in brain functional networks.

Further considerations
Several issues need to be further addressed. First, it has been

reported that the deconvolution of the hemodynamic effects in

fMRI time series before GCA can minimize spurious interactions

due to the hemodynamic variability between brain regions [17]. It

would be a prominent issue to evaluate and deconvolute the

hemodynamic response of distinct brain regions of R-fMRI in the

future. Second, the cardiac and respiratory cycles may have effects

when evaluating the causal influence between brain regions. It

would be crucial to record cardiac and respiratory signals

simultaneously with fMRI scanning and to reduce these effects

in GCA. Third, how the anatomical connections constrain the

functional directed networks remains unknown. It would be

important to integrate the structural network and the functional

directed network modalities in the future. Fourth, previous

electroencephalography (EEG) studies have demonstrated that

alpha activity (EEG signals with frequencies 8–12) is present with

eyes closed and that the sources of this activity are located in

occipital cortical regions and the thalamus [90–92]. The

dependency between EEG and fMRI is not straightforward and

the link between fMRI and neuronal activity is frequency-

dependent in a complex fashion [93]. Therefore, it’s important

to perform studies of simultaneous recording of EEG/Magneto-

encephalography and fMRI to validate the current results

regarding the patterns of the information flow.

Conclusion
Using a linear multivariate GCA on R-fMRI data, we

constructed a population-based whole-brain functional directed

network and demonstrated that this network followed a small-

world topology with significant modular structures. Thus, our

study showed the improvement on the small-world topology as

compared to a previous study [27] showing weak small-world

properties using a kernel version of GCA and individual network

analysis. Importantly, we identified driving hubs predominantly

located in the attentional network as well as driven hubs

predominantly located in the DMN. The current study provides

a directed network perspective and demonstrates a spontaneous

information flow and causal influence between distinct brain

regions, which provides insight into our understanding of the brain

functional architecture. Further work could be conducted to

examine how the spontaneous functional directed network

organization of the human brain is altered during normal

development and aging as well as in specific brain disorders.
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Figure S1 Hub distribution and modular architecture of the

human brain functional directed network for the two subgroups. (A)
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hubs (red colors) or non-hubs (green colors) otherwise for subgroup 1

(Left) and subgroup 2 (Right). (B) Regions with in-degree

kin
i .mean+SD are considered driven hubs (blue colors) or non-hubs

(green colors) otherwise for subgroup 1 (Left) and subgroup 2 (Right).

(C) All of the 90 brain regions are marked with different colored

spheres (different colors represent distinct network modules) and

further mapped onto the cortical surfaces for subgroup 1 (Left) and

subgroup 2 (Right). For the abbreviations of the regions, see Table S1.
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(DOC)

Table S2 Driving hub regions in the functional directed network
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